

Dear Jr Maker,

Welcome aboard! We are Adam & Anna. And we’re so excited to

have you join our team of Makers.

In the following pages, we will walk you through the steps to build

ZOOM:BIT... and very soon you will have your own robot car. You’re

also going to learn to code and train ZOOM:BIT to perform some

tricks to WOW your friends. We’re sure you will have lots of fun

together.

If you encounter any problem along the way, you

can reach us on Telegram t.me/zoombit_support.

We’ll be there to guide you. So are you ready?

Let’s start!

Adam & Anna

Note from rero EDUteam @ Cytron

Cheryl Ng & SC Lim

Suhana Oazmi

http://www.cytron.io/p-zoombit

CONTENT

What’s in the Box?

Quick Start Guidebook

Zoom Track

REKA:BIT (with or without micro:bit)

Maker Line Sensor Grove Cable x4

Ultrasonic Sensor LED Module x2

DC Motor & Wheel x2 Screwdriver Screw & Nut x4

Castor

Double-sided
Tape x5

Power & Data Cable

Servo Motor White Rivet x4 Black Rivet x8 Battery HolderAA Battery x4

1

2

3

4

5

6

The wires should

be facing inwards

and the notch

facing outwards.

0
1
7

Wire Connections:

* Clamp the exposed wire lead,
and not the insulator.

8

9

10

0
1

0
3

11

13

Wire Connections:

12

13

14

0
1

0
2

0
3

15

16

17

Wire Connections:

18

19

20

Wire Connections:

21

22

0
1

0
2

0
3

23

24

25

Wire Connections:

0
1

0
2

0
3

26

27

28

Wire Connections:

29

30

31

32

33

34

1

2

https://makecode.microbit.org/

A B C D

H I J K L

E GF

A

B

C

D

E

F

G

H

I

J

K

L

3

4

5

6

You can view a simulation of your code in MakeCode Editor. You will notice that the

“Hello!” text only scrolls across the display one time but the beating heart animation

keeps looping over dan over again. Do you know why?

Click here to
restart simulator

7

8

9

If the pop-up window does not appear, it means that the file has been

automatically downloaded to the location where your browser is set to save downloads.

Right-click on the downloaded .hex file which will appear at the bottom of the window

and select ‘Show in folder’. Click and drag the downloaded “microbit-xxxx.hex” file to

the MICROBIT drive, as if you were copying a file to a flash drive.

Notes:

10

Do you see “Hello!” scroll across the LED matrix followed by a beating heart animation?

If you missed it, you can slide the power switch to OFF, and then turn it ON again to reset.

You can “connect device” to make it easier to download your code.

After you’ve connected your device, you can directly flash code to your ZOOM:BIT with

just ONE single click. Yeah! ~

11

Do You Know?

12

You need to use either the new Edge or Chrome browser, and have the latest

firmware on your micro:bit device. If you have problems connecting your device, you can

refer to https://makecode.microbit.org/device/usb/webusb/troubleshoot for more info.

Notes:

Design image to be displayed on the LED

matrix. Click the rounded squares to turn

on/off the corresponding LEDs.

Display number.

Display an arrow pointing

to the direction set.

Turn off all LEDs.

Add a delay to slow down the program, i.e. pause

for the number of milliseconds (ms) that is set.

1000 millisecond = 1 second

Here’s a FUN challenge for you !

A B C D E M V W X Y Z

... ...

1

2

Let’s teach ZOOM:BIT to

sing... Do Re Mi ~

You can create a new

project or continue adding

blocks to your earlier code.

3

Click on Button A of your on-screen simulator.

Do you hear a familiar tune? Have fun

checking out the other melodies too~

Make sure your computer speakers

are turned ON.
Notes:

Besides the list of preset melodies, you can also program ZOOM:BIT

to play any song you like. However, you will need to teach it note by note using [play tone

(middle C) for (1 beat)] and [rest (ms) (1 beat)] blocks from [Music] category.

Do You Know?

Which note to play, and for how long (duration)

Pause, i.e. do not play any note,

for the duration set.

Let’s try to program ZOOM:BIT to play the opening bars of the STAR WARS theme song~

These two lines are

the same. You can

use a loop block to

make your code

more compact.

4

All coding blocks are colour

coded. You can find blocks you need in the

category drawer with the same colour.

If you need more guidance, you can go to

https://link.cytron.io/zoombit-tutorial-2

for step-by-step guide to build the code.

Do You Know?

You can also type keywords in the search box to find the blocks you need.Do You Know?

5

Your ZOOM:BIT (with micro:bit V2) can “sing” and make music because it

has a built-in speaker which enables it to produce sounds. If you’re using micro:bit v1

(without built-in speaker), you need to plug in a Grove buzzer to Port P0:P1 to play

sounds. You can refer to https://link.cytron.io/zoombit-grove-buzzer for more details.

Notes:

Use Melody Editor to compose
and play a short melody of
notes at the tempo set

Set or change the “tempo” (i.e., the
pace of your song). The higher the
bpm (beats per minute), the faster
or livelier your tune will be.

Use conditions, such as melody note played or
melody ended etc, as event triggers in your code.

Set the volume,
ranging from

0 to 255
(max loudness).

Play sound expressions (
for micro:bit V2 only).

Stop all the sounds that are currently
playing and also sounds waiting to play.

Enable, or disable, the built-in speaker
to play sounds (for micro:bit V2 only).

You can program ZOOM:BIT to play other songs if you know how to read music.

Here’s a simple guide to help you to “decode” a music score.

The position of a music note on the staff (i.e. the five horizontal
lines) tells us which tone to play. The higher the note sits on the
staff, the higher the pitch/frequency of the sound, and vice versa..

Different musical notations are
used to tell us the duration
(i.e. how long) a note is to be
played.

C D E F G A B

Here’s a FUN challenge for you !

It’s a very familiar

tune. Can you guess

what melody it is?

The LED matrix on micro:bit can also function as light level sensor.

Let’s program ZOOM:BIT to automatically turn ON its headlights when the surrounding

is dark, and turn OFF when it is bright.

Do You Know?

1

Extensions are sets of

custom blocks that we

add to MakeCode Editor

to enable us to easily

program micro:bit

accessories, such as our

ZOOM:BIT robot.

2

3

4
You can find the blocks

you need from the
following category drawers:

For more guidance, you can
go to https://link.cytron.io/

zoombit-tutorial-3
for step-by-step guide

to build the code.

On start, show heart icon.

Always check surrounding light level.

If light level is below 50
(i.e. the surrounding is
dark), turn ON
headlights.

Else, turn OFF headlights.

5

Does ZOOM:BIT turn on its headlights? If not, try to cast a shadow over the LED matrix.

Next, try to shine a bright flashlight at the LED matrix; what do you observe?

Notes: Light level reading ranges from 0 (no light detected) to 255 (maximum brightness).

Light Level Reading

“Toggle” means to switch
from one state to another.
If the current state is ON,
then it will switch to OFF,
and vice versa.

Get light level reading and
display the value when
Buttons A+B are pressed.

(i) What’s the light level reading in your room now? What’s the light level reading when you

shine a bright light at the LED matrix?

* For accuracy, record at least 3-4 readings and then calculate the average value.

(ii) Do you see the headlights blinking after you press Button A? Power off to make it stop.

This block slows down the
program so that you can
observe the headlights
turning ON and OFF.

Here’s a FUN challenge for you !

Referring to the International Morse Code chart

provided, can you get ZOOM:BIT to flash an S.O.S.

message by pressing button A and button B in the

correct sequence? Demo video available at

https://link.cytron.io/zoombit-morse-code

International Morse Code
1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is

one unit.
4. The space between letters is three units.
5. The space between words is seven units.

Before we start programming ZOOM:BIT to move, let’s check to make sure that we’ve

wired it up correctly.

If the wheels are not spinning in the
directions as shown by the red arrows, you need
to check and correct the DC motor connections.
You can refer to pp. 5-6.

1

2

Notes:

Now we’re ready to program ZOOM:BIT to move around... Let’s start! Zip zip Zoom ~

1

2

You can go to https://link.cytron.io/zoombit-tutorial-4 for step-by-step guide to

build the code if you need more guidance.

3

4

Here’s a FUN challenge for you !

The challenger who takes the shortest time (or the least number of moves) to guide

ZOOM:BIT out from the obstacle course is the WINNER!

➢

➢

➢

You can change the speed and delay settings to control the rotation

angle. Try different values to complete the following table.

Do You Know?

Use this block to control the
spinning speed of each wheel.

If both wheels spin at different speeds, ZOOM:BIT will steer towards the
side of the wheel that is spinning at a lower speed. In the example above, ZOOM:BIT will move
forward but steer to the left over time because the left wheel is spinning at a lower speed.

Can you predict which direction ZOOM:BIT will be moving if we set Left Speed to -150
and Right Speed to -200 ? Test it out and see if you’re right.

Do You Know?

There is inevitably a slight difference between a motor’s specifications and its

actual performance. Seemingly identical motors are likely to rotate at slightly different speeds even

though they are supplied with the same voltage. In other words, even though you program

your ZOOM:BIT to move straight (i.e. same speed for both left and right wheels), it is

still likely that ZOOM:BIT will veer slightly to the right, or left, after some time.

Do You Know?

There are two RGB LEDs on REKA:BIT board, labelled “ 0 ” and “ 1 ”. You can program

them to light up in different colours using blocks from [REKA:BIT] category drawer.

1

For more guidance,

you can refer to

https://link.cytron.io/

zoombit-tutorial-5 for

step-by-step guide to

build the code.

2

3

Do you notice RGB LED “ 0 ” on the right blinking before ZOOM:BIT turns right ?

And RGB LED “ 1 ” on the left blinking before ZOOM:BIT turns left ? And both

RGB LEDs light up in blue when ZOOM:BIT is moving forward ?

Turn off all RGB pixels.

If the colour you
want is not available
on the colour palette,
you can use this
block to customise.

Set RGB pixel(s) to the selected
colour. To change colour, click on
the oval and select the colour you
want from the colour palette.

Change the brightness of the RGB
pixels. The brightness value ranges
from 0 to 255 (maximum brightness).

Black = turn off RGB LED

Here’s a FUN challenge for you !

* For the siren, you can

alternate between

middle C and middle F#

notes in a loop.

* You can skip the siren

part if you’re using

micro:bit V1 without

speaker/buzzer.

ZOOM:BIT

ZOOM:BIT’s head is attached to a 180 degree servo motor. In other words, you can program

ZOOM:BIT to look straight ahead and likewise you can make ZOOM:BIT turn its head to

the left, or right, by controlling the servo to turn to your desired angle. Let’s try!

1

For more guidance,

you can refer to

https://link.cytron.io/

zoombit-tutorial-6

for step-by-step

guide to build the

code.

2

3

4

Does your ZOOM:BIT look straight ahead after you press Buttons A+B? If it is

NOT properly aligned, then you need to unscrew the head, reposition it and then

reattach it back to the servo motor horn.

If after manually readjusting the head, you still find that it is turned slightly to the right/left

when it should be looking straight, you can correct it by making adjustment to your code.

Follow the steps below to determine the “angle correction” for your ZOOM:BIT.

1

2

3

For more guidance, you can

refer to https://link.cytron.io/

zoombit-tutorial-6a for step-by-

step guide to build the code.

If ZOOM:BIT is tilted right,
the variable [angle_correction]
is changed by 1 and the head
turns to the right by 1 degree.

To read the value of
[angle_correction], lift the
robot so that the micro:bit
logo is up (and robot head
is facing down).

On start, variable
[angle_correction]
is set to 0.

If tilted left, the variable is
changed by -1 and the head
turns to the left by 1 degree.

4

5

Record the

angle_correction

reading here.

Now that you know the [angle_correction] value for your ZOOM:BIT, you can use that

in your future projects to ensure that the head is turned to the angle you want.

Here’s a sample code which

includes angle correction.

When powered up, ZOOM:BIT

will lookto the left, then to the

right and finally face straight

ahead.

Fill in the [angle_correction] value
you recorded earlier here.

With micro:bit V2, you can use [On Loud Sound] block from [Input] category as

the trigger for ZOOM:BIT to start dancing; and you can add [Music] blocks too

to make the performance more lively!

Here’s a FUN challenge for you !

Now that ZOOM:BIT is mobile, let’s teach him not to bump into obstacles in its path.

1

2

You can go to https://link.cytron.io/

zoombit-tutorial-7 for step-by-step

guide to build the code if you need

more guidance.

3

ZOOM:BIT will keep

moving forward when

no obstacle is detected.

Try to hold up your hand in

front of ZOOM:BIT. Does

your robot stop when it is

about 10cm from your

hand?

Slowly move your hand

towards ZOOM:BIT.

Observe its response

when the distance

is less than 10cm.

Let’s make ZOOM:BIT turn right when Button A is pressed and turn left when Button B

is pressed when it is in a stationary mode, i.e. stops 10 cm away from an obstacle.

4

This is called a
“nested if condition”.

We can make blocks of code that perform a specific task into a function.

After creating a function, you can use the function in multiple places in your program without

having to build the same blocks of code over and over again. In addition, professional

programmers also use functions to make their code more easily readable by others.

Do You Know?

5

6

7

You can click icon

to collapse the blocks

of code after you’re

done building a

function.

Click icon to open

if you need to review

or edit your code.

8

9

Yeah!! Now ZOOM:BIT can roam freely in your room without bumping into things.

When ZOOM:BIT’s path is blocked by an obstacle, you can press Button A (to turn right)

or Button B (to turn left) to guide ZOOM:BIT to bypass the hindrance.

Do you think you can modify the code so that ZOOM:BIT can autonomously move

away from obstacles without waiting for your help? Give it a try ~

Get ZOOM:BIT to sing a song. Move the palm of your hand towards, or

away, from its face to get ZOOM:BIT to play the tone that you want. If

you’re not sure how it works, scan the QR code to watch a demo video.

Here’s a FUN challenge for you !

LED indicators for each of the 5 IR sensors (S1-S5). LED will
light up when line is detected by the corresponding IR sensor.

Press this
button to
calibrate

the
sensor.

Slide the line
color switch to
“DARK” as the

track provided is
using a black line
(against a white
background),

Maker Line Sensor - Top View

ZOOM:BIT can be programmed to follow a line? ZOOM:BIT can

easily do that because it is equipped with Maker Line sensor. The sensor enables it to

detect a line (either black or white) against a background with a contrasting colour.

Do You Know?

1

Before you start programming ZOOM:BIT, follow the steps below to calibrate the

Maker Line sensor first. Calibration only needs to be carried out once unless the

sensor height, line or background color has changed.

If the calibration is successful, you’ll see a running light effect;

your MAKER LINE is now ready to use. Scan this QR code to

watch a demo video if you’re not sure what to do or how it works.

2

3

4

For more guidance, you can refer to

https://link.cytron.io/zoombit-tutorial-8

for step-by-step guide to build the code.

1

2

3

Watch in awe as your ZOOM:BIT zooms off and moves around track after you press

Button A. Can you figure out how the code works?

On start, show icon □.

Then do nothing as long as button A is NOT pressed.

If button A is pressed, exit the while loop.
Play melody ‘jump up’ once.

Forever check Maker Line reading and respond
accordingly.

Condition
Line

detected ?

What to do to stay/

get backon track ?

Centre Move straight.

Left Turn left slightly.

Right Turn right slightly.

Far left Turn left.

Far right Turn right.

Does your ZOOM:BIT sometimes wander off track, especially when it is going around the curve?

When ZOOM:BIT is turning the corner, its Maker Line sensor might be momentarily away

from the line (as shown below). When this happens, ZOOM:BIT gets confused because

in our code earlier we did not tell ZOOM:BIT what to do when no line is detected.

To prevent ZOOM:BIT from wandering

away, we need to teach ZOOM:BIT to

find its way back on track by turning in

the same direction (as before it loses

detection of the line) ... until the line is

detected again.

We can add a variable “position” to our

code for that purpose. Turn to

the next page to learn how

to improve our earlier code.

4

5

Set the variable [position]
to 0 when ZOOM:BIT is
powered up.

Set variable
[position] to “ 1 ”
when line is
detected on left
or far left ;
set to “ 2 ” when
line is detected
on right or far
right.

6

This is a nested if condition.
Check if variable [position] is 1 ,
then turn left ;

else if variable [position] is 2 ,
then turn right.

A new condition whereby
no line is detected.

7

Let’s test. Try to push ZOOM:BIT off track

(until no line is detected by Maker Line).

Do you notice ZOOM:BIT readjusting

its position to get back on track,

instead of wandering off?

❑

❑

❑

❑

Tips: We can program ZOOM:BIT to ‘know’ that it has crossed

the finishing line by using the [line detected on (all)] block.

Here’s a FUN challenge for you !

Apart from using the track provided, you can also get creative and design your

own track using black vinyl electrical tape. You can easily get one at any hardware store. Have

fun designing your own track for ZOOM:BIT~

Do You Know?

Together, we’ve taught ZOOM:BIT many tricks and he has learned them one by one.

Let’s now train ZOOM:BIT to juggle them all - switching from one mode to another

effortlessly.

MODE 0 :
Manual Mode

MODE 2 : Line
Following Mode

MODE 1 : Obstacle
Avoidance Mode

1

Exclude this music block if
you’re using micro:bit V1.

Next, let’s add the other modes. To do that, we’re going to use functions.

2

Do you notice that the code is similar to what you built in Chapter 7 ? However, here the

blocks are in a [function obstacle_avoidance] block, instead of [forever] block.

3

You can click icon

to collapse the blocks

of code after you’re

done building the

function.

Click icon to open

if you need to review

or edit your code.

The code is similar to what you built in
Chapter 8. However, here the blocks are
in a [function line_following] block,
instead of a [forever] block.

*Take note that you’ll need to create a
new variable [position].

4

If you’re not sure how to do that, you
can refer to https://link.cytron.io/
zoombit-tutorial-9 for step-by-step
guide to build the code.

5

Next, we are going to add “modes” to our program so that when we change from one mode

to another, ZOOM:BIT will automatically perform the corresponding task which we assign to

that particular mode.

6

7

Replace with [on (logo down)]
block if you’re using micro:bit V1.

8

Here’s a FUN challenge for you !

Here’s a tip to help you get started - You’ll need to add another else-if

condition for [mode = 3] and also create a new function for your new

mode. Give it a try!

The micro:bit on your ZOOM:BIT is equipped with radio communication

function. In other words, if you have another micro:bit, you can program it to be used as

a remote controller to control your ZOOM:BIT. Let’s try!

Do You Know?

1

2

3

We need to set both

the micro:bit (remote

controller) and

ZOOM:BIT to the

same radio group in

order for them to

transmit and receive

radio signals from

each other. In this

example, we set both

to radio group 1.

4

Brake Scroll “Hi” across the LED matrix Toggle headlights

Move forward Turn left Turn right Reverse

Now you can remote control your ZOOM:BIT to roam the territory. Have fun !

Here’s a FUN challenge for you !

Here’s a tip for you. You can add [on button B pressed] and [on button A+B pressed] to your remote

controller code (micro:bit) ; and you’ll need to add new else-if conditions to your ZOOM:BIT’s code.

My Learning Journal with ZOOM:BIT

CHAPTER 1
Display text

and animation.

CHAPTER 2
Play simple
melodies.

CHAPTER 3
When dark,

turn on headlights.

CHAPTER 4
Move & turn
on command.

CHAPTER 5
Signal using
RGB LEDs.

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

I finished building my ZOOM:BIT on ____________ ; and together, we explored the lessons in this

book and attempted all the challenges.

My Learning Journal with ZOOM:BIT

CHAPTER 6
Control head

movement/angle

CHAPTER 7
Detect and

avoid obstacles

CHAPTER 8
Follow the line
& stay on track

CHAPTER 9
Change from one
mode to another

BONUS
CHAPTER
Remote control

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

Lesson & challenge
completed on

Verified by :

P/S Get a teacher/parent to check & verify for you.

Note from rero EDUteam @ Cytron
Woohoo... CONGRATULATIONS!! You’ve successfully built your own

robot car; and together with ZOOM:BIT, you’ve learned to code and

completed challenges as a team. Great job! We hope you’ve also had

fun along the way.

So what’s next? You can visit www.cytron.io to explore and get add-on

sensors or parts to customize your robot car. How about adding a

Grove OLED Display to the I2C port? Or perhaps, adding more servo

motors to form a robot arm? The possibilities are endless. Have fun

exploring~

Do share your ZOOM:BIT adventures with

us on Telegram t.me./zoombit_support.

We’d love to hear from you. Cheers~

Adam & Anna

http://www.cytron.io
t.me./zoombit_support

